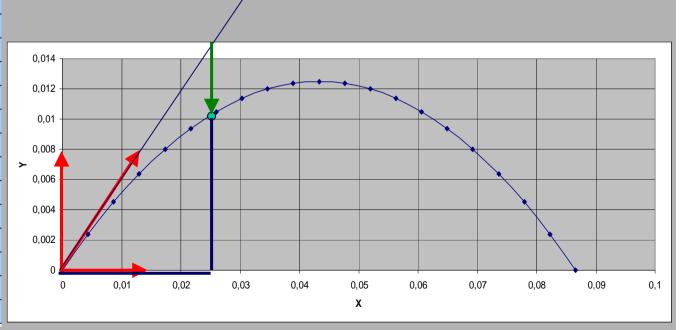


Der schiefe Wurf im Ruhesystem (Inertialsystem 0)


t	Х	Υ
0	0	0
0,0050	0,0043	0,0024
0,0100	0,0087	0,0045
0,0150	0,0130	0,0064
0,0200	0,0173	0,0080
0,0250	0,0217	0,0094
0,0300	0,0260	0,0105
0,0350	0,0303	0,0114
0,0400	0,0346	0,0120
0,0450	0,0390	0,0124
0,0500	0,0433	0,0125
0,0550	0,0476	0,0124
0,0600	0,0520	0,0120
0,0650	0,0563	0,0114
0,0700	0,0606	0,0105
0,0750	0,0650	0,0094
0,0800	0,0693	0,0080
0,0850	0,0736	0,0064
0,0900	0,0779	0,0045
0,0950	0,0823	0,0024
0,1000	0,0866	0,0000

$$V_0 = 1 \frac{m}{s} \qquad \alpha = 30^{\circ}$$

$$V_{0x} = V_0 \cdot \cos \alpha \qquad V_{0y} = V_0 \cdot \sin \alpha$$

$$V_{0x} = V_0 \cdot \cos \alpha$$
 $V_{0y} = V_0 \cdot \sin \alpha$

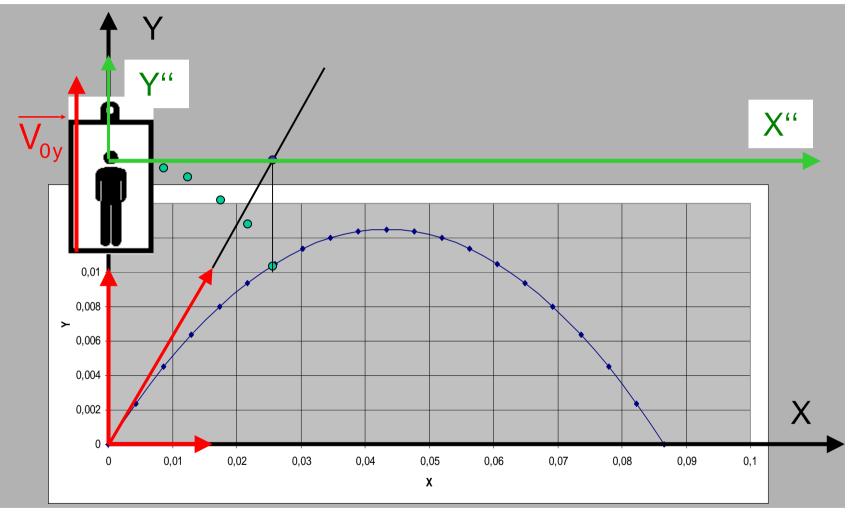
$$X(t) = V_{0x} \cdot t \qquad Y(t) = V_{0y} \cdot t - \frac{1}{2} g \cdot t^2$$

Cusanus-Gymnasium Wittlich

Physik – M

υy

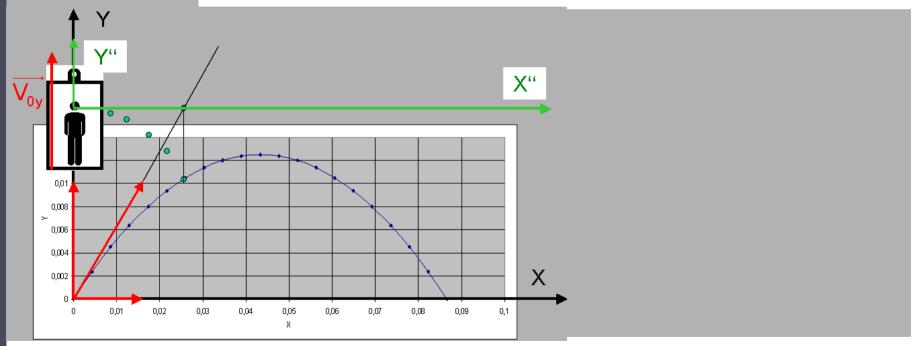
Schiefer Wurf im Inertialsystem 1



Der Radfahrer sieht in seinem Koordinatensystem einen senkrechten Wurf nach oben.

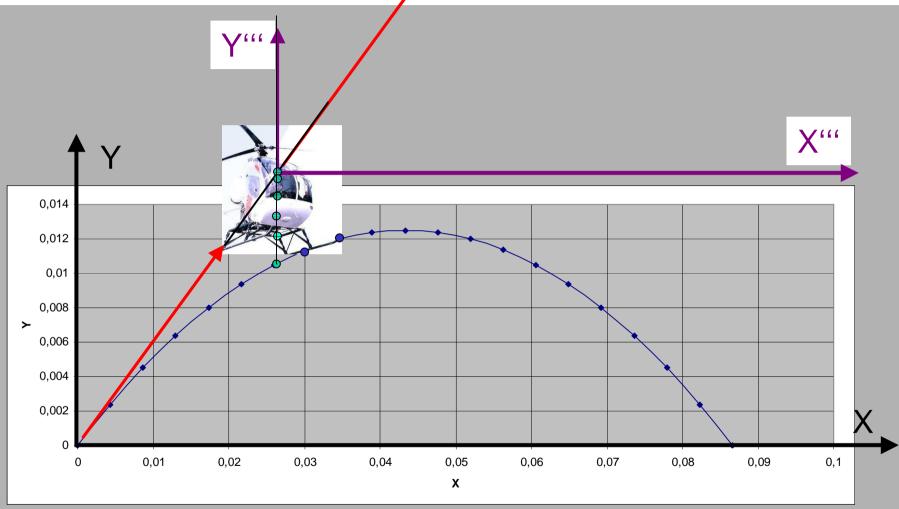
Schräger Wurf im Inertialsystem 2

Der Fahrstuhlfahrer sieht in seinem Koordinatensystem einen horizontalen Wurf.



Cusanus-Gymnasium Wittlich

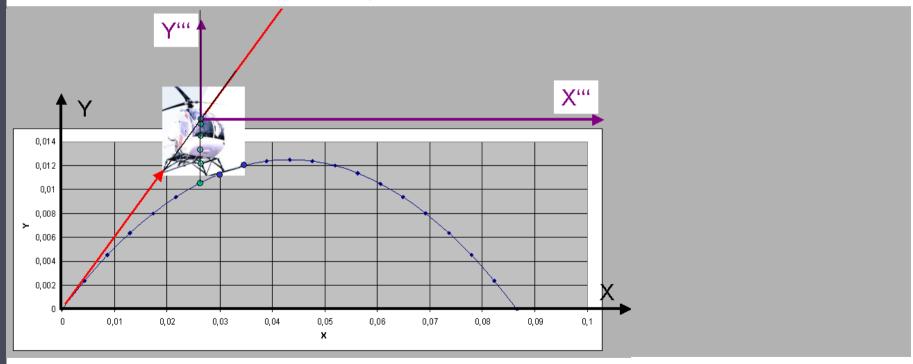
Schräger Wurf im Inertialsystem 2


$$Y'' = Y - V_{0y} \cdot t = V_{0y} \cdot t - \frac{1}{2}gt^2 - V_{0y} \cdot t = -\frac{1}{2}gt^2$$

 $X'' = V_{0x} \cdot t$

Der Fahrstuhlfahrer sieht in seinem Koordinatensystem einen horizontalen Wurf.

Der Hubschrauberpilot sieht in seinem Koordinatensystem einen freien Fall.



Cusanus-Gymnasium Wittlich Physik - Mechanik Fachlehrer: W.Zimmer

Schräger Wurf im Inertialsystem 3

$$Y''' = Y - V_{0y} \cdot t = V_{0y} \cdot t - \frac{1}{2}gt^2 - V_{0y} \cdot t = -\frac{1}{2}gt^2$$
 $X''' = X - V_{0x} \cdot t = V_{0y} \cdot t - V_{0x} \cdot t = 0$

Der Hubschrauberpilot sieht in seinem Koordinatensystem einen freien Fall.